Source code for pyepri.optimization

"""This module contains generic solvers for optimization problems. See
the :py:mod:`pyepri.processing` module for higher level usage of those
generic solvers to address EPR imaging reconstructions.

"""
import math
import types
import matplotlib.pyplot as plt
import pyepri.checks as checks
import pyepri.displayers as displayers

[docs] def tvsolver_cp2011(y, lbda, A, adjA, LA, grad, div, Lgrad, backend=None, init=None, tol=1e-7, nitermax=1000000, gain=1., verbose=False, video=False, eval_energy=False, displayer=None, Ndisplay=1, notest=False): r"""Generic solver for inverse problems with quadratic data-fidelity and discrete total variation regularity. Compute a minimizer of .. math:: E(u) := \frac{1}{2} \|A(u)-y\|^2 + \lambda \cdot \mathrm{TV}(u) where :math:`u` is a mono or multidimensional signal, :math:`y` is an input mono or multidimensional signal, :math:`\mathrm{TV}` denotes a discrete total variation regularizer, and :math:`\lambda` is a positive scalar. The minimization of :math:`E` is handled using Chambolle-Pock Algorithm :cite:p:`Chambolle_Pock_2011`. Parameters ---------- y : array_like (with type `backend.cls`) Input mono or multidimensional signal. lbda : float Regularization parameter (TV weight :math:`\lambda` in the energy :math:`E` defined above). A : <class 'function'> Function with prototype ``v = A(u)`` and such that ``A(u).shape == y.shape``, corresponding to the linear operator to be inverted involved in E (see above). adjA : <class 'function'> Function with prototype ``u = adjA(v)`` corresponding to the adjoint of the linear operator A. LA : float An upper bound for the l2 induced norm of the operator ``A``. grad : <class 'function'> Function with prototype ``g = grad(u)``, used to evaluate the discrete gradient of the (mono or multidimensional) signal `u` involved in `E`. The signal ``g`` returned by this function must have shape ``(u.ndim,) + u.shape`` and be such that ``g[j]`` represents the discrete gradient of ``u`` along its j-th axis. div : <class 'function'> Function with prototype ``d = div(g)``, corresponding to the opposite adjoint of the ``grad`` operator. Lgrad : float An upper bound for the l2 induced norm of the ``grad`` operator. backend : <class 'pyepri.backends.Backend'> or None, optional A numpy, cupy or torch backend (see :py:mod:`pyepri.backends` module). When backend is None, a default backend is inferred from the input array ``y``. init : array_like (with type `backend.cls`) Initializer for the primal variables of the numerical optimization scheme. tol : float, optional A tolerance parameter used to stop the scheme iterations when the relative error between the latent signal ``u`` and its previous value is less that ``tol``. nitermax : int, optional Maximal number of iterations for the numerical optimization scheme. gain : float, optional Parameter that can be used to reweight the default primal and dual time steps (parameters tau and sigma of the Chambolle-Pock Algorithm), using + tau = gain * .99 / L + sigma = (1. / gain) * .99 / L where ``L = np.sqrt(LA**2 + (lbda*Lgrad)**2)`` The convergence of the numerical scheme is ensured for any positive value of the gain, however, the setting of this parameter may drastically affect the practical convergence speed of the algorithm. verbose : bool, optional Enable / disable verbose mode. Set ``verbose = True`` to display the latent iteration index :math:`k`, the relative error between :math:`u^{(k)}` and :math:`u^{(k-1)}`, and, when ``evalE`` is given, :math:`E(u^{(k)})`), each time the iteration index :math:`k` is a multiple of ``Ndisplay``. video : bool, optional Enable / disable video mode. eval_energy : bool, optional Enable / disable energy computation (set ``eval_energy=True`` to compute the energy of the latent variable ``u`` each ``Ndisplay`` iteration). displayer : <class 'pyepri.displayers.Displayer'>, optional When video is True, the attribute ``displayer.init_display`` and ``displayer.update_display`` will be used to display the latent array_like ``u`` along the iteration of the numerical scheme. When not given (``displayer=None``), a default displayer will be instantiated (supported signals are 2D or 3D array_like). In this situation, the appropriate signal displayer is inferred from ``init`` (see :py:mod:`pyepri.displayers` documentation for more details). Ndisplay : int, optional Can be used to limit energy evaluation (when ``evalE`` is given), image display (when video mode is enabled), and verbose mode to the iteration indexes ``k`` that are multiples of Ndisplay (useful to speed-up the process). notest : bool, optional Set ``notest=True`` to disable consistency checks. Return ------ out : dict A dictionary with content ``{'u': u, 'ubar': ubar, 'p': p, 'q':q, 'E': E, 'iter': iter}`` where + ``u``: (array_like with type `backend.cls`) is the output signal :math:`u` involved in the optimization scheme (when convergence is reached, this is a minimizer of :math:`E`). + ``ubar``: (array_like with type `backend.cls`) is the output signal :math:`\overline{u}` involved in the optimization scheme (when convergence is reached, ``ubar`` is the same as ``u``). + ``p``: (array_like with type `backend.cls`) is the output dual signal :math:`p` involved in the optimization scheme. + ``q``: (array_like with type `backend.cls`) is the output dual signal :math:`q` involved in the optimization scheme, the couple ``(p, q)`` is a solution of a dual formulation of the initial problem). + ``E``: (array_like with type `backend.cls` or ``None``) when ``eval_energy`` is ``True``, ``E`` is a one dimensional array containing the energy values computed each ``Ndisplay`` iterations, (``E[k]`` is the energy of :math:`u^{(n(k))}` where ``n(k) = k * Ndisplay``). Otherwise, when ``eval_energy`` if ``False``, ``E`` takes the value ``None``. + ``iter``: (int) the iteration index when the scheme was stopped. Notes ----- The numerical scheme is designed to address a primal-dual reformulation of the initial problem involving two dual variables (one coming from the TV term, and one coming from the quadratic data-fidelity term) denoted below by :math:`p` and :math:`q`. Given :math:`u^{(0)}` (whose value is set through the ``init`` input parameter), set :math:`\overline{u}^{(0)} = u^{(0)}`, :math:`p^{(0)} = 0`, :math:`q^{(0)} = 0`, and iterate for :math:`k \geq 0` .. math :: p^{(k+1)} &= \Pi_{\mathcal{B}}(p^{(k)} + \sigma \lambda \nabla \overline{u}^{(k)}) q^{(k+1)} &= \frac{q^{(k)} + \sigma (A \overline{u}^{(k)} - y)}{1 + \sigma} u^{(k+1)} &= u^{(k)} + \tau \lambda \mathrm{div}(p^{(k+1)}) - \tau A^*q^{(k+1)} \overline{u}^{(k+1)} &= 2 u^{(k+1)} - u^{(k)} where + :math:`\nabla u^{(k)}` corresponds to the discrete gradient (input parameter ``grad``) of :math:`u^{(k)}`; + :math:`\mathrm{div}` corresponds to the opposite of the adjoint of :math:`\nabla` (input parameter ``div``); + :math:`A^*` corresponds to the adjoint of the :math:`A` operator (input parameter ``adjA``); + :math:`\Pi_{\mathcal{B}}` corresponds to the orthogonal projection over a convex and closed dual unit ball `B` related to the TV regularity term involved in :math:`E`; + :math:`\tau` and :math:`\sigma` correspond to the primal and dual steps of the scheme (convergence toward a solution of the problem is guaranteed when :math:`\tau \sigma < |||A|||^2 + \lambda^2 |||\nabla|||^2`, denoting by :math:`|||\cdot|||` the l2 induced norm). See also -------- pyepri.displayers tvsolver_cp2016 """ # backend inference (if necessary) if backend is None: backend = checks._backend_inference_(y=y) # consistency checks if not notest: _check_nd_inputs_(True, backend, y=y, lbda=lbda, A=A, adjA=adjA, LA=LA, grad=grad, div=div, Lgrad=Lgrad, init=init, tol=tol, nitermax=nitermax, gain=gain, verbose=verbose, video=video, eval_energy=eval_energy, displayer=displayer, Ndisplay=Ndisplay) # initialize primal variables if init is None : u = adjA(y) u.flags.writeable = True else : u = backend.copy(init) ubar = backend.copy(u) # retrieve y data-type in str format dtype = backend.lib_to_str_dtypes[y.dtype] # initialize dual variables ushape = u.shape yshape = y.shape udim = len(u.shape) p = backend.zeros((udim,) + ushape, dtype=dtype) q = backend.zeros(yshape, dtype=dtype) # compute primal and dual time steps L = backend.sqrt(LA**2 + (Lgrad * lbda)**2) tau = gain * .99 / L sigma = (1. / gain) * .99 / L # precompute g = grad(ubar) and delta = A(ubar) - y g = grad(ubar) delta = A(ubar) - y # allocate memory for E (if needed) if eval_energy: E = backend.zeros((1+nitermax//Ndisplay,),dtype=dtype) E[0] = .5*(delta**2).sum() + lbda*backend.sqrt((g**2).sum(axis=0)).sum() else: E = None # deal with video mode if video: if displayer is None: displayer = displayers.create(backend.to_numpy(u)) fg = displayer.init_display(backend.to_numpy(u)) fgnum = displayer.get_number(fg) # main loop iter = 0 stop = iter >= nitermax while not stop: # update dual variable p p += (sigma * lbda) * g p /= backend.maximum(backend.sqrt((p**2).sum(axis=0)), 1) # update dual variable q q += sigma * delta q /= (1 + sigma) # update u and ubar from (px,py) and q ubar = -u u += tau * lbda * div(p) - tau * adjA(q) ubar += 2. * u # update g = discrete gradient of ubar g = grad(ubar) # update delta = A(ubar) - y delta = A(ubar) - y # compute relative error between u^{iter+1} and u^{iter} (use # ubar = 2*u^{iter+1} - u^{iter}) deltasquare = ((ubar - u)**2).sum().item() usquare = (u**2).sum().item() # update stopping criterion iter += 1 stop = (iter >= nitermax) or (deltasquare < tol**2 * usquare) # deal with energy evaluation if eval_energy and (0 == iter % Ndisplay) : E[iter//Ndisplay] = .5 * (delta**2).sum() + \ lbda*(backend.sqrt((g**2).sum(axis=0))).sum() # deal with verbose and video modes if (verbose or video) and 0 == iter%Ndisplay : rel = math.sqrt(deltasquare / usquare) if eval_energy: msg = "iteration %d : rel = %.2e, E = %.17e" \ % (iter, rel, E[iter//Ndisplay]) else: msg = "iteration %d : rel = %.2e" % (iter, rel) if verbose: print(msg) if video and plt.fignum_exists(fgnum): displayer.update_display(backend.to_numpy(u), fg) displayer.title(msg) displayer.pause() # check stopping criterion if stop or (video and not plt.fignum_exists(fgnum)) : if E is not None: E = E[0:iter//Ndisplay+1] break # close figure when code is running on interactive notebook if video and displayer.notebook: displayer.clear_output() # prepare and return output out = {'u': u, 'ubar': ubar, 'p': p, 'q': q, 'E': E, 'iter': iter} return out
[docs] def tvsolver_cp2016(init, gradf, Lf, lbda, grad, div, Lgrad, backend=None, tol=1e-7, nitermax=1000000, evalE=None, verbose=False, video=False, displayer=None, Ndisplay=1, notest=False): r"""Generic solver for inverse problems with Lipschitz differentiable data-fidelity term and discrete total variation regularization. Compute a minimizer of .. math:: E(u) := f(u) + \lambda \cdot \mathrm{TV}(u) where :math:`u` is a mono or multidimensional signal, :math:`f` is a Lipschitz differentiable data-fidelity term, :math:`\mathrm{TV}` denotes a discrete total variation regularizer, and :math:`\lambda` is a positive scalar. The minimization of :math:`E` is handled by a Conda-Vũ (see :cite:p:`Condat_2013` and :cite:p:`Vu_2013`) like optimization scheme presented in :cite:p:`Chambolle_Pock_2016`. Parameters ---------- init : array_like (with type `backend.cls`) Initializer for the primal variable :math:`u` of the scheme. gradf : <class 'function'> Function with prototype ``y = gradf(u)``, used to evaluate the gradient of the data-fidelity function (``f``) at ``u``. Lf : float A Lipschitz constant for the ``gradf`` operator. lbda : float Regularization parameter (TV weight :math:`\lambda` in the energy E defined above). grad : <class 'function'> Function with prototype ``g = grad(u)``, used to evaluate the discrete gradient of the (mono or multidimensional) signal `u` involved in `E`. The signal ``g`` returned by this function must have shape ``(u.ndim,) + u.shape`` and be such that ``g[j]`` represents the discrete gradient of ``u`` along its j-th axis. div : <class 'function'> Function with prototype ``d = div(g)``, corresponding to the opposite adjoint of the ``grad`` operator. Lgrad : float An upper bound for the l2 induced norm of the ``grad`` operator. backend : <class 'pyepri.backends.Backend'> or None, optional A numpy, cupy or torch backend (see :py:mod:`pyepri.backends` module). When backend is None, a default backend is inferred from the input array ``init``. tol : float, optional A tolerance parameter used to stop the scheme iterations when the relative error between the latent signal ``u`` and its previous value is less that ``tol``. nitermax : int, optional Maximal number of iterations for the numerical optimization scheme. evalE : <class 'function'> A function with prototype ``e = evalE(u)`` that takes as input an array_like ``u`` with same size as ``init`` and returns ``E(u)``. verbose : bool, optional Enable / disable verbose mode. Set ``verbose = True`` to display the latent iteration index :math:`k`, the relative error between :math:`u^{(k)}` and :math:`u^{(k-1)}`, and, when ``evalE`` is given, :math:`E(u^{(k)})`), each time the iteration index :math:`k` is a multiple of ``Ndisplay``. video : bool, optional Enable / disable video mode. displayer : <class 'pyepri.displayers.Displayer'>, optional When video is True, the attribute ``displayer.init_display`` and ``displayer.update_display`` will be used to display the latent array_like ``u`` along the iteration of the numerical scheme. When not given (``displayer=None``), a default displayer will be instantiated (supported signals are 2D or 3D array_like). In this situation, the appropriate signal displayer is inferred from ``init`` (see :py:mod:`pyepri.displayers` documentation for more details). Ndisplay : int, optional Can be used to limit energy evaluation (when ``evalE`` is given), image display (when video mode is enabled), and verbose mode to the iteration indexes ``k`` that are multiples of Ndisplay (useful to speed-up the process). notest : bool, optional Set ``notest=True`` to disable consistency checks. Return ------ out : dict A dictionary with content ``{'u': u, 'ubar': ubar, 'p': p, 'E': E, 'iter': iter}`` where + ``u``: (array_like with type `backend.cls`) is the output signal :math:`u` involved in the optimization scheme (when convergence is reached, this is a minimizer of :math:`E`). + ``ubar``: (array_like with type `backend.cls`) is the output signal :math:`\overline{u}` involved in the optimization scheme (when convergence is reached, ``ubar`` is the same as ``u``). + ``p``: (array_like with type `backend.cls`) is the output signal :math:`p` involved in the optimization scheme (when convergence is reached, ``p`` is a solution of a dual formulation of the initial problem). + ``E``: (array_like with type `backend.cls`) is, when ``evalE`` is given, a one dimensional array containing the energy values computed each ``Ndisplay`` iterations, (``E[k]`` is the energy of :math:`u^{(n(k))}` where ``n(k) = k * Ndisplay``). When ``evalE`` is not given, the returned value of ``E`` is ``None``. + ``iter``: (int) the iteration index when the scheme was stopped. Notes ----- This function implements the following numerical scheme. Given :math:`u^{(0)}` (whose value is set through the ``init`` input parameter), set :math:`\overline{u}^{(0)} = u^{(0)}`, :math:`p^{(0)} = 0`, and iterate for :math:`k\geq 0` .. math :: p^{(k+1)} &= \Pi_{\mathcal{B}}(p^{(k)} + \sigma \lambda \nabla \overline{u}^{(k)}) u^{(k+1)} &= u^{(k)} + \tau \left(\lambda \mathrm{div}(p^{(k+1)}) \nabla f(u^{(k)})\right) \overline{u}^{(k+1)} &= 2 u^{(k+1)} - u^{(k)} where + :math:`\nabla u^{(k)}` corresponds to the discrete gradient (input parameter ``grad``) of :math:`u^{(k)}`; + :math:`\mathrm{div}` corresponds to the opposite of the adjoint of :math:`\nabla` (input parameter ``div``); + :math:`\nabla f(u^{(k)})` corresponds to the value at the point :math:`u^{(k)}` of the gradient of the data-fidelity term :math:`f` involved in the definition of :math:`E` (input parameter ``gradf``); + :math:`\Pi_{\mathcal{B}}` corresponds to the orthogonal projection over a convex and closed dual unit ball `B` related to the TV regularity term involved in :math:`E`; + :math:`\tau = \frac{1}{L_f}` corresponds to the primal step of the scheme (and :math:`L_f` is a Lipschitz constant of :math:`\nabla f` (input parameter ``Lf``); + :math:`\sigma = \frac{Lf}{(\mathrm{\lambda} L_g)^2}` corresponds to the dual step of the scheme (and :math:`L_g` is an upper bound of the l2-induced norm of the :math:`\nabla` operator (input parameter ``Lgrad``)). See also -------- pyepri.displayers tvsolver_cp2016_multisrc """ # backend inference (if necessary) if backend is None: backend = checks._backend_inference_(init=init) # consistency checks if not notest: _check_nd_inputs_(True, init=init, gradf=gradf, Lf=Lf, lbda=lbda, grad=grad, div=div, Lgrad=Lgrad, backend=backend, tol=tol, nitermax=nitermax, evalE=evalE, verbose=verbose, video=video, displayer=displayer, Ndisplay=Ndisplay) # initialize primal variables u and ubar u = backend.copy(init) ubar = backend.copy(u) # retrieve data type in str format dtype = backend.lib_to_str_dtypes[init.dtype] # initialize dual variable p ushape = u.shape udim = len(u.shape) p = backend.zeros((udim,)+ushape, dtype=dtype) # compute primal and dual time steps tau = .5 / Lf sigma = Lf / ((Lgrad * lbda)**2) # if needed, allocate memory for E and compute E[0] if evalE is not None: E = backend.zeros((1+nitermax//Ndisplay,), dtype=dtype) E[0] = evalE(u) else: E = None # deal with video mode if video: if displayer is None: displayer = displayers.create(backend.to_numpy(u)) fg = displayer.init_display(backend.to_numpy(u)) fgnum = displayer.get_number(fg) # main loop iter = 0 stop = iter >= nitermax while not stop: # update dual variable p p += (sigma*lbda)*grad(ubar) p /= backend.maximum(backend.sqrt((p**2).sum(0)), 1) # update u and ubar from (px,py) and q ubar = -u u += tau*(lbda*div(p) - gradf(u)) ubar += 2.*u # compute relative error between u^{iter+1} and u^{iter} (use # ubar = 2*u^{iter+1} - u^{iter}) deltasquare = ((ubar - u)**2).sum().item() usquare = (u**2).sum().item() # update stopping criterion iter += 1 stop = (iter >= nitermax) or (deltasquare < tol**2 * usquare) # deal with energy evaluation if 0 == iter % Ndisplay and evalE is not None: E[iter//Ndisplay] = evalE(u) # deal with verbose and video modes if (verbose or video) and 0 == iter % Ndisplay: rel = math.sqrt(deltasquare / usquare) if evalE is not None: msg = "iteration %d : rel = %.2e, E = %.10e" % \ (iter, rel, E[iter//Ndisplay]) else: msg = "iteration %d : rel = %.2e" % (iter, rel) if verbose: print(msg) if video and plt.fignum_exists(fgnum): displayer.update_display(backend.to_numpy(u), fg) displayer.title(msg) displayer.pause() # check stopping criterion if stop or (video and not plt.fignum_exists(fgnum)): if E is not None: E = E[0:iter//Ndisplay+1] break # close figure when code is running on interactive notebook if video and displayer.notebook: displayer.clear_output() # prepare and return output out = {'u': u, 'ubar': ubar, 'p': p, 'E': E, 'iter': iter} return out
[docs] def tvsolver_cp2016_multisrc(init, gradf, Lf, lbda, grad, div, Lgrad, backend=None, tol=1e-7, nitermax=1000000, evalE=None, verbose=False, video=False, displayer=None, Ndisplay=1, notest=False): r"""Generic solver for inverse problems similar to :py:func:`tvsolver_cp2016` but with primal variable defined as a sequence of subvariables. Compute a minimizer of .. math:: E(u) := f(u) + \lambda \cdot \sum_{j = 1}^{K} \mathrm{TV}(u_j) where :math:`u = (u_1, u_2, \dots, u_K)` is a sequence of mono or multidimensional signals, :math:`f` is a Lipschitz differentiable data-fidelity term, :math:`\mathrm{TV}` denotes a discrete total variation regularizer, and :math:`\lambda` is a positive scalar. The minimization of :math:`E` is handled by a Conda-Vũ (see :cite:p:`Condat_2013` and :cite:p:`Vu_2013`) like optimization scheme presented in :cite:p:`Chambolle_Pock_2016`. Parameters ---------- init : sequence of array_like (with type `backend.cls`) Sequence ``init = (init1, init2, ..., initK)`` of initializers for the primal variable :math:`u` of the scheme. gradf : <class 'function'> Function with prototype ``y = gradf(u)``, used to evaluate the gradient of the data-fidelity function (``f``) at points ``u``. Lf : float A Lipschitz constant for the ``gradf`` operator. lbda : float Regularization parameter (TV weight :math:`\lambda` in the energy E defined above). grad : <class 'function'> Function with prototype ``g = grad(v)``, used to evaluate the discrete gradient of the mono or multidimensional signals :math:`u_j` (i.e., the arrays ``v in u``) involved in `E`. div : <class 'function'> Function with prototype ``d = div(g)``, corresponding to the opposite adjoint of the ``grad`` operator. Lgrad : float An upper bound for the l2 induced norm of the ``grad`` operator. backend : <class 'pyepri.backends.Backend'> or None, optional A numpy, cupy or torch backend (see :py:mod:`pyepri.backends` module). When backend is None, a default backend is inferred from the input array ``init[0]``. tol : float, optional A tolerance parameter used to stop the scheme iterations when the relative error between the latent signal ``u`` and its previous value is less that ``tol``. nitermax : int, optional Maximal number of iterations for the numerical optimization scheme. evalE : <class 'function'> A function with prototype ``e = evalE(u)`` that takes as input a sequence of array_like ``u = [u[j] for j in range(K)]`` and returns the value of ``E(u)``. verbose : bool, optional Enable / disable verbose mode. Set ``verbose = True`` to display the latent iteration index :math:`k`, the relative error between :math:`u^{(k)}` and :math:`u^{(k-1)}`, and, when ``evalE`` is given, :math:`E(u^{(k)})`), each time the iteration index :math:`k` is a multiple of ``Ndisplay``. video : bool, optional Enable / disable video mode. displayer : <class 'pyepri.displayers.Displayer'>, optional When video is True, the attribute ``displayer.init_display`` and ``displayer.update_display`` will be used to display the latent array_like ``u`` along the iteration of the numerical scheme. When not given (``displayer=None``), a default displayer will be instantiated (supported signals are sequences of 2D or 3D array_like). In this situation, the appropriate signal displayer is inferred from ``init`` (see :py:mod:`pyepri.displayers` documentation for more details). Ndisplay : int, optional Can be used to limit energy evaluation (when ``evalE`` is given), image display (when video mode is enabled), and verbose mode to the iteration indexes ``k`` that are multiples of Ndisplay (useful to speed-up the process). notest : bool, optional Set ``notest=True`` to disable consistency checks. Return ------ out : dict A dictionary with content ``{'u': u, 'ubar': ubar, 'p': p, 'E': E, 'iter': iter}`` where + ``u``: (array_like with type `backend.cls`) is the output signal :math:`u` involved in the optimization scheme (when convergence is reached, this is a minimizer of :math:`E`). + ``ubar``: (array_like with type `backend.cls`) is the output signal :math:`\overline{u}` involved in the optimization scheme (when convergence is reached, ``ubar`` is the same as ``u``). + ``p``: (array_like with type `backend.cls`) is the output signal :math:`p` involved in the optimization scheme (when convergence is reached, ``p`` is a solution of a dual formulation of the initial problem). + ``E``: (array_like with type `backend.cls`) is, when ``evalE`` is given, a one dimensional array containing the energy values computed each ``Ndisplay`` iterations, (``E[k]`` is the energy of :math:`u^{(n(k))}` where ``n(k) = k * Ndisplay``). When ``evalE`` is not given, the returned value of ``E`` is ``None``. + ``iter``: (int) the iteration index when the scheme was stopped. See also -------- pyepri.displayers tvsolver_cp2016_multisrc """ # backend inference (if necessary) if backend is None: backend = checks._backend_inference_(init=init[0]) # consistency checks if not notest: _check_nd_inputs_(False, init=init, gradf=gradf, Lf=Lf, lbda=lbda, grad=grad, div=div, Lgrad=Lgrad, backend=backend, tol=tol, nitermax=nitermax, evalE=evalE, verbose=verbose, video=video, displayer=displayer, Ndisplay=Ndisplay) # initialize primal variables u and ubar u = list(backend.copy(v) for v in init) ubar = list(backend.copy(v) for v in init) # retrieve data type in str format dtype = backend.lib_to_str_dtypes[init[0].dtype] # initialize dual variable p ushape = tuple(im.shape for im in u) udim = u[0].ndim p = list(backend.zeros((udim,)+s, dtype=dtype) for s in ushape) # compute primal and dual time steps tau = .5 / Lf sigma = Lf / ((Lgrad * lbda)**2) # if needed, allocate memory for E and compute E[0] if evalE is not None: E = backend.zeros((1+nitermax//Ndisplay,), dtype=dtype) E[0] = evalE(u) else: E = None # deal with video mode if video: u_np = tuple(backend.to_numpy(im) for im in u) if displayer is None: displayer = displayers.create(u_np) fg = displayer.init_display(u_np) fgnum = displayer.get_number(fg) # precompute gradf(u) gfu = gradf(u) # main loop iter = 0 stop = iter >= nitermax while not stop: # initialize error terms deltasquare = 0. usquare = 0. # source-wise update or primal & dual variables for j in range(len(u)): # update dual variable in p[j] p[j] += (sigma * lbda) * grad(ubar[j]) p[j] /= backend.maximum(backend.sqrt((p[j]**2).sum(0)), 1) # update u[j] and ubar[j] from p[j] ubar[j] = -u[j] u[j] += tau * (lbda * div(p[j]) - gfu[j]) ubar[j] += 2. * u[j] # compute relative error between u[j]^{iter+1} and # u[j]^{iter} (use ubar[j] = 2*u[j]^{iter+1} - u^{iter}) # and accumulate the result into deltasquare deltasquare += ((ubar[j] - u[j])**2).sum().item() # compute square l2 norm of u[j] and accumulate the result # into usquare usquare += (u[j]**2).sum().item() # update stopping criterion iter += 1 stop = (iter >= nitermax) or (deltasquare < tol**2 * usquare) # deal with energy evaluation if 0 == iter % Ndisplay and evalE is not None: E[iter//Ndisplay] = evalE(u) # deal with verbose and video modes if (verbose or video) and 0 == iter % Ndisplay: rel = math.sqrt(deltasquare / usquare) if evalE is not None: msg = "iteration %d : rel = %.2e, E = %.10e" % \ (iter, rel, E[iter//Ndisplay]) else: msg = "iteration %d : rel = %.2e" % (iter, rel) if verbose: print(msg) if video and plt.fignum_exists(fgnum): u_np = tuple(backend.to_numpy(im) for im in u) displayer.update_display(u_np, fg) displayer.title(msg) displayer.pause() # check stopping criterion if stop or (video and not plt.fignum_exists(fgnum)): if E is not None: E = E[0:iter//Ndisplay+1] break # update gfu gfu = gradf(u) # close figure when code is running on interactive notebook if video and displayer.notebook: displayer.clear_output() # prepare and return output out = {'u': u, 'ubar': ubar, 'p': p, 'E': E, 'iter': iter} return out
[docs] def _check_nd_inputs_(is_monosrc, backend, y=None, lbda=None, A=None, adjA=None, LA=None, init=None, gradf=None, Lf=None, grad=None, div=None, Lgrad=None, tol=None, nitermax=None, gain=None, verbose=None, video=None, displayer=None, Ndisplay=None, eval_energy=None, evalE=None): """Factorized consistency checks for functions in the :py:mod:`pyepri.optimization` submodule.""" # check backend consistency if is_monosrc: checks._check_backend_(backend, y=y, init=init) else: checks._check_seq_(t=backend.cls, init=init) # lbda: must be a nonnegative float if (lbda is not None) and ((not isinstance(lbda, (float, int))) or (lbda < 0)): raise RuntimeError( "Parameter `lbda` must be a nonnegative float scalar number (int is also tolerated)." ) # LA: must be a nonnegative float if (LA is not None) and (not isinstance(LA, (float, int)) or LA < 0): raise RuntimeError( "Parameter `LA` must be a nonnegative float scalar number (int is also tolerated)." ) # tol: must be a float if not isinstance(tol, (float, int)): raise RuntimeError( "Parameter `tol` must be a float scalar number (int is also tolerated)." ) # Ndisplay: must be a positive integer if (not isinstance(Ndisplay, int)) or Ndisplay <= 0: raise RuntimeError( "Parameter `Ndisplay` must be a positive int scalar number." ) # gain: must be None or a positive float if gain and ((not isinstance(gain, (float, int))) or gain <= 0): raise RuntimeError( "Parameter `gain` must be a positive float scalar number (int is also tolerated)." ) # A, adjA, grad, div, gradf: must be some functions checks._check_type_(types.FunctionType, A=A, adjA=adjA, grad=grad, div=div, gradf=gradf, evalE=evalE) # verbose, video: must be bool checks._check_type_(bool, verbose=verbose, video=video) # nitermax: must be a nonnegative integer if not math.isinf(nitermax) and ((not isinstance(nitermax, int)) or nitermax < 0): raise RuntimeError( "Parameter `nitermax` must be a nonnegative int scalar number." ) needE = evalE or eval_energy if needE and math.isinf(nitermax): raise RuntimeError( "Parameter `nitermax` must be finite when energy computation is required." ) return True