Reading EPR datasets (BES3T or ASCII format)

How to load EPR datasets in BES3T format (the file format used on Bruker ELEXSYS and EMX machines) or in ASCII format (whatever your EPR imaging system, you are likely able to export your EPR measurements in ASCII format, so you will be able to load the ASCII file in Python).

First of all, let us import the necessary modules and instantiate a PyEPRI backend (here numpy).

# -------------- #
# Import modules #
# -------------- #
import numpy as np
import matplotlib.pyplot as plt
import pyepri.backends as backends
import pyepri.datasets as datasets
import pyepri.io as io
plt.ion()

# -------------- #
# Create backend #
# -------------- #
#
# You can uncomment one line below to select another backend (if
# installed on your system).
#
backend = backends.create_numpy_backend()
#backend = backends.create_torch_backend('cpu') # uncomment here for torch-cpu backend
#backend = backends.create_cupy_backend() # uncomment here for cupy backend
#backend = backends.create_torch_backend('cuda') # uncomment here for torch-gpu backend

Load EPR datasets in BES3T format (.DTA and .DSC files)

Now let us open a BES3T dataset embedded with this package (you can simply change the path_proj and path_h variables to open your own dataset).

#--------------------#
# Load BES3T dataset #
#--------------------#
#
# In this example, we load a dataset made of the files
# ``phalanx-20220203-proj.{DSC,DTA}`` (projections) and
# ``phalanx-20220203-h.{DSC,DTA}`` (reference spectrum) stored in the
# ``datasets`` folder of the PyEPRI package.
#
# This dataset will be loaded in ``float32`` precision (you can also
# select ``float64`` precision by setting ``dtype='float64'``).
#
dtype = 'float32'
path_proj = datasets.get_path('phalanx-20220203-proj.DSC') # you can replace here by your own dataset (e.g., path_proj = '~/my_dataset1.DSC')
path_h = datasets.get_path('phalanx-20220203-h.DSC') # same comment
B, proj, param = io.read_bruker_bes3t_dataset(path_proj, dtype=dtype, backend=backend) # projections
_, h, _ = io.read_bruker_bes3t_dataset(path_h, dtype=dtype, backend=backend) # reference spectrum
fgrad = param['FGRAD'] # coordinates of the field gradient vectors for each projection

We describe below the content of the obtained arrays:

  • proj is a two-dimensional array containing the projections (each row of the array represents a projection);

  • B is a mono-dimensional array corresponding to the homogeneous magnetic field sampling grid of the projections;

  • fgrad is a two-dimensional array containing the coordinates of the field gradient vectors used to acquire the projections (this dataset is a 2D imaging dataset containing 113 projections, fgrad contains 2 rows and 113 column; fgrad[0,j] and fgrad[1,j] correspond to the X-axis and Y-axis coordinate of the field gradient vector used to acquire the j-th projection proj[j,:]); (each row of the array represents a projection);

  • h is a mono-dimensional array containing the zero-gradient spectrum of the imaged EPR sample (its sampling grid is identical to that stored in B).

Also, the param variable is a dictionary containing all retrieved parameters in the .DSC file.

Remark: in this example, the loaded arrays B, proj and h have type numpy.ndarray because a numpy backend was passed to the pyepri.io.read_bruker_bes3t_dataset() function when loading the data). With a different backend, different type of arrays will be loaded (as explained in the CPU & GPU backends tutorial).

Now let us display the retrieved signals using matplotlib. Note that if you are using a cupy or pytorch backend, it is recommended to send the data back to the CPU in numpy format and display those numpy signals. This can be done using backend.to_numpy() (when the backend is already a numpy backend, as it is the case in this examples, the backend.to_numpy() simply returns its input without doing any conversion).

#--------------------------------#
# display the reference spectrum #
#--------------------------------#
plt.figure(figsize=(13, 5))
plt.subplot(1, 2, 1)
plt.plot(backend.to_numpy(B), backend.to_numpy(h))
plt.xlabel('B: homogeneous magnetic field intensity (G)')
plt.ylabel('measurements (arb. units)')
plt.title('reference spectrum (h)')

#-------------------------#
# display the projections #
#-------------------------#
plt.subplot(1, 2, 2)
extent = (B[0].item(), B[-1].item(), proj.shape[0] - 1, 0)
plt.imshow(backend.to_numpy(proj), extent=extent, aspect='auto')
cbar = plt.colorbar()
cbar.set_label('measurements (arb. units)')
plt.xlabel('B: homogeneous magnetic field intensity (G)')
plt.ylabel('projection index')
_ = plt.title('projections (proj)')
reference spectrum (h), projections (proj)

Let’s load another dataset corresponding to a 3D imaging experiment. In this case, the fgrad array contains three rows (and as many columns as number of acquired projections). The rows with indexes 0, 1, and 2 respectively correspond to the X, Y and Z axis coordinates of the field gradient vectors.

#----------------------------------------------------#
# Load another BES3T dataset (3D imaging experiment) #
#----------------------------------------------------#
#
# Let us load a dataset made of the files
# ``fusillo-20091002-h.{DSC,DTA}`` (reference spectrum) and
# ``fusillo-20091002-proj.{DSC,DTA}`` (projections) stored in the
# ``data`` folder of the PyEPRI package.
#
fname = 'fusillo-20091002'
path_proj = datasets.get_path('fusillo-20091002-proj.DSC') # you can replace here by your own dataset (e.g., path_proj = '~/my_dataset1.DSC')
path_h = datasets.get_path('fusillo-20091002-h.DSC') # same comment
B, proj, param = io.read_bruker_bes3t_dataset(path_proj, dtype=dtype, backend=backend) # projections
_, h, _ = io.read_bruker_bes3t_dataset(path_h, dtype=dtype, backend=backend) # reference spectrum
fgrad = param['FGRAD'] # coordinates of the field gradient vectors for each projection

#--------------------------------#
# display the reference spectrum #
#--------------------------------#
plt.figure(figsize=(13, 5))
plt.subplot(1, 2, 1)
plt.plot(backend.to_numpy(B), backend.to_numpy(h))
plt.xlabel('B: homogeneous magnetic field intensity (G)')
plt.ylabel('measurements (arb. units)')
plt.title('reference spectrum (h)')

#-------------------------#
# display the projections #
#-------------------------#
plt.subplot(1, 2, 2)
extent = (B[0].item(), B[-1].item(), proj.shape[0] - 1, 0)
plt.imshow(backend.to_numpy(proj), extent=extent, aspect='auto')
cbar = plt.colorbar()
cbar.set_label('measurements (arb. units)')
plt.xlabel('B: homogeneous magnetic field intensity (G)')
plt.ylabel('projection index')
_ = plt.title('projections (proj)')
reference spectrum (h), projections (proj)

Load EPR datasets in ASCII format

Whatever your EPR imaging system, you can probably manage to save your data in ASCII format (that is, a simple text file containing the numeric values of your measurements). These kind of data can be easily loaded using the numpy.loadtxt() function of the Numpy library.

In the example below, we load again the phalanx phalanx-20220203 dataset from ASCII files containing the measurements.

Type help(np.loadtxt) to check the documentation of the numpy.loadtxt() function and adapt the code presented below to your own ASCII files.

#-----------------------------------------------#
# Load an ASCII dataset (2D imaging experiment) #
#-----------------------------------------------#
#
# Let us load a dataset made of the files ``phalanx-20220203-h.txt``
# (reference spectrum), ``phalanx-20220203-proj.txt`` (projections),
# ``phalanx-20220203-B.txt`` (sampling nodes) and
# ``phalanx-20220203-h.txt`` (coordinates of the field gradient
# vectors) stored in the ``datasets`` folder of the PyEPRI package.
#
fname = 'phalanx-20220203'
path_proj = datasets.get_path('phalanx-20220203-proj.txt') # you can replace here by your own dataset (e.g., path_proj = '~/my_dataset1.txt')
path_B = datasets.get_path('phalanx-20220203-B.txt') # same comment
path_fgrad = datasets.get_path('phalanx-20220203-fgrad.txt') # same comment
path_h = datasets.get_path('phalanx-20220203-h.txt') # same comment
B = backend.from_numpy(np.loadtxt(path_B, delimiter=' ', dtype=dtype)) # load from file 'phalanx-20220203-B.txt'
h = backend.from_numpy(np.loadtxt(path_h, delimiter=' ', dtype=dtype)) # load from file 'phalanx-20220203-h.txt'
proj = backend.from_numpy(np.loadtxt(path_proj, delimiter=' ', dtype=dtype)) # load from file 'phalanx-20220203-proj.txt'
fgrad = backend.from_numpy(np.loadtxt(path_fgrad, delimiter=' ', dtype=dtype)) # load from file 'phalanx-20220203-fgrad.txt'

#--------------------------------#
# display the reference spectrum #
#--------------------------------#
plt.figure(figsize=(13, 5))
plt.subplot(1, 2, 1)
plt.plot(backend.to_numpy(B), backend.to_numpy(h))
plt.xlabel('B: homogeneous magnetic field intensity (G)')
plt.ylabel('measurements (arb. units)')
plt.title('reference spectrum (h)')

#-------------------------#
# display the projections #
#-------------------------#
plt.subplot(1, 2, 2)
extent = (B[0].item(), B[-1].item(), proj.shape[0] - 1, 0)
plt.imshow(backend.to_numpy(proj), extent=extent, aspect='auto')
cbar = plt.colorbar()
cbar.set_label('measurements (arb. units)')
plt.xlabel('B: homogeneous magnetic field intensity (G)')
plt.ylabel('projection index')
_ = plt.title('projections (proj)')
reference spectrum (h), projections (proj)

Note that in the above commands, the ASCII files are loaded as numpy arrays using np.loadtxt. The command backend.from_numpy is used to convert those numpy arrays into the appropriate array type depending on the backend that you are using.

Total running time of the script: (0 minutes 0.662 seconds)

Estimated memory usage: 236 MB

Gallery generated by Sphinx-Gallery